Đề thi Toán vào lớp 10 Hà Nội phù hợp thí sinh học trực tuyến kéo dài

GD&TĐ - Đúng 10h ngày 19/6, các thí sinh tại Hà Nội chính thức kết thúc kỳ thi vào lớp 10 với việc hoàn thành bài thi môn Toán, thời gian làm bài là 120 phút.

Các thí sinh tại Hà Nội đã hoàn thành kỳ thi vào lớp 10 năm 2022 sau khi kết thúc bài thi môn Toán vào sáng 19/6.
Các thí sinh tại Hà Nội đã hoàn thành kỳ thi vào lớp 10 năm 2022 sau khi kết thúc bài thi môn Toán vào sáng 19/6.

Trao đổi với Báo Giáo dục & Thời đại, thầy Nguyễn Cao Cường, Hiệu trưởng Trường THCS Thái Thịnh (Đống Đa, Hà Nội) nhận định, cấu trúc đề ổn định so với các năm học trước gồm 5 bài. Đây là một đề thi phù hợp với việc đại đa số học sinh có thời gian dài học trực tuyến.

Đề thi nhẹ nhàng, có tính phân hóa các đối tượng học sinh. Sự phân loại nằm ở các câu: I.3; III.2b; IV.3 và bài V. Học sinh không bất ngờ với đề toán năm nay. Mức độ điểm trung bình có thể ở 6,5 - 7,25 điểm. Nhiều câu hỏi học sinh rất lo lắng đã được giảm mức độ phù hợp như câu 3 bài I, câu II.2b, câu 2 bài III.

"Tóm lại, đề toán nhẹ nhàng, có tính phân loại, phù hợp với một năm học mà đa số học sinh học trực tuyến trong thời gian dài" - thầy Cao Cường nhấn mạnh.

Nhận xét cụ thể, thầy Cường cho rằng, ở Bài I (2,0 điểm). Gồm 3 câu hỏi trong một bài toán. Đây là dạng toán rút gọn biểu thức và câu hỏi phụ, một dạng toán rất quen thuộc. Học sinh dễ dàng thực hiện được câu 1, câu 2.

Ở câu hỏi thứ 3, câu hỏi phân loại học sinh khá và học sinh trùng bình. Ở câu hỏi này học sinh thực hiện chuyển vế, lập luận mẫu dương suy ra tử âm, kết hợp điều kiện đề bài và điều kiện của câu hỏi tìm số nguyên dương lớn nhất sẽ tìm được kết quả.

Thí sinh tan thi tại Trường THPT Hoài Đức A vào sáng 19/6.
Thí sinh tan thi tại Trường THPT Hoài Đức A vào sáng 19/6.

Bài II (2,0 điểm) gồm 2 câu hỏi.

Câu hỏi 1 là bài toán giải bằng cách lập phương trình, hệ phương trình. Bài toán thuộc dạng toán chuyển động quen thuộc, học sinh được làm quen, luyện tập nhiều trước kỳ thi. Câu hỏi này học sinh cần lưu ý khi chọn ẩn và đặt điều kiện chính xác, lập luận, giải phương trình và trình bày cẩn thận, kết luận vận tốc của mỗi xe.

Câu hỏi 2: Bài toán thực tế liên quan đến kiến thức hình hình cầu. Học sinh chỉ cần nhớ kiến thức về diện tích mặt cầu, kết hợp với giả thiết của bài toán bán kính R=9,5cm. Khi trình bày, bước thay đầu tiên phải là xấp xỉ do đề cho pi gần bằng 3,14.

Bài III (2,5 điểm) gồm 2 câu hỏi.

Câu hỏi 1: Bài toán giải hệ phương trình quen thuộc. Học sinh cần lưu ý đặt điều kiện y khác 0. Học sinh có thể đặt ẩn phụ hoặc không để tìm kết quả. Kết hợp điều kiện và kết luận về nghiệm của hệ phương trình.

Câu hỏi 2: Bài toán về phương trình bậc hai, hệ thức Vi-et.

Ở ý a: Sau khi xét phương trình hoành độ giao điểm, học sinh tính Delta và chứng tỏ giá trị của nó luôn dương (do biểu thức có dạng bình phương cộng một số dương). Từ đó kết luận phương trình hoành độ giao điểm luôn có hai nghiệm phân biệt và suy ra đường thẳng luôn cắt parabol tại hai điểm phân biệt.

Ở ý b: Học sinh chỉ cần nhân biểu thức của đề bài, đưa về tổng và tích hai nghiệm, áp dụng hệ thức Vi-et là xử lý được. Câu hỏi này nhẹ hơn nhiều so với dự đoán của nhiều thí sinh

Bài IV (3,0 điểm). Bài tập hình học tổng hợp với 3 câu hỏi.

Câu hỏi 1: Câu hỏi cơ bản về tứ giác nội tiếp. Không khó khăn với học sinh.

Câu hỏi 2: Học sinh áp dụng hệ thức lượng cho hai tam giác vuông là xử lý được ý đầu. Ý thứ hai qua việc chỉ ra góc 45 độ và hai góc nội tiếp cùng chắn một cung của đường tròn nội tiếp tứ giác ở câu 1 là giải quyết được.

Câu hỏi 3: Đây là câu hỏi khó, mang tính phân loại cao. Thông qua việc chứng minh 2 cặp góc bằng nhau, học sinh sẽ chứng tỏ được 3 điểm thẳng hàng.

Bài V (0,5 điểm) là bài toán cực trị đại số. Đây là bài toán khó dành cho học sinh giỏi. 

Tin tiêu điểm

Đừng bỏ lỡ

Minh họa/INT

'Nỗi ám ảnh' của ông Trump

GD&TĐ - Một trong những quốc gia được nhắc nhiều và chịu ảnh hưởng ngay trong ngày nhậm chức của Tổng thống Mỹ Donald Trump là Mexico.